The neurophysiology of tES

Michael A. Nitsche Department Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany

Modulation of cortical activity and excitability of the human brain Oscillations Activity Plasticity TMS PAS rTM tAC S A sin $(\omega t + \varphi)$ φ/ω $T = 2\pi/\omega$ в tRN iTBS imTBS Normalised Amplitude of MEP cTBS 2 50µV 0.5 0.0 5 Baseline O 15 20 25 10 Time (min)

Actually, electrical brain stimulation has a long history...

Primary action of tE-stimulation: modulation of resting membrane potential

Cortical DC-stimulation of the rat

Bindman et al. 1964

50% (?) of transcranially applied direct currents reach the brain

- calculations on realistic head models, validation in animal experiments (Rush & Driscoll 1968)
- validation in humans (Dymond et al. 1975)

tDCS in humans

Polarity-dependent excitabilitymodulation during tDCS

Nitsche & Paulus 2000

Pharmacological determinants of acute tDCS

Nitsche et al. 2003, 2004

After-effects of tDCS - plasticity

Glutamate

Dopamine

Donchin et al. 2010, Goldman-Racic et al. 2000

Drivers of after-effects of tDCS - ion channels

Drivers of after-effects of tDCS - glutamate

Nitsche et al. 2003, 2004

Drivers of after-effects of tDCS - GABA

Nitsche et al. 2004, Stagg et al. 2009

Conclusion I

-Primary effects of tDCS depend on ion channel activity/polarization

- After-effects of tDCS depend on glutamate
- GABA reduction might contribute
- For tDCS, calcium-dependent glutamatergic plasticity can be assumed

Calcium concentration

Lisman 2001, Nitsche & Paulus 2000

Monte-Silva et al., 2013

Calcium concentration

Badsikadze et al., 2013

Physiology of plasticity IV -Modulation by repetition

Monte-Silva et al. 2010, 2013

Conclusion II

 tDCS is well suited to induce/model nonfocal plasticity in the human brain

• Non-linear effects, dependent on stimulation duration, and strength

 Late-phase plasticity accomplished by specific protocols

Network effects of tDCS

anodal

cathodal

tDCS-induced functional connectivity alterations in motor-related networks - fMRI

Polania et al. 2011a

tDCS-induced functional connectivity alterations in motor-related networks - fMRI

Polania et al. 2011a

tDCS-induced functional connectivity alterations of motor cortical networks - EEG

Polania et al. 2011c

tDCS-induced functional connectivity alterations of motor cortical networks - EEG

	Task (before tDCS)	Task (after tDCS)	Rest (after tDCS)	Task (after tDCS)	
	Rest (before tDCS)	Rest (before tDCS)	Rest (before tDCS)	Task (before tDCS)	
Theta					
Alpha					
Beta					
Low-Gamma (30-60 Hz)					
High-Gamma (60-90 Hz)					

Conclusion III

- Functional MRI, and EEG allow the identification of stimulation-induced alterations of functional connectivity of interregional cortical networks
- Remote effects of tDCS depend at least partially on activation of functionally defined networks

Oscillatory stimulation with alternating currents (tACS)

No neuroplastic effects

 Table 1
 Mean MEP amplitudes (SEM) before and after tACS at 1-, 5-, 10-, 15-, and 30-Hz stimulation

	1 Hz	10 Hz	15 Hz	30 Hz	45 Hz	Sham
Before	1.02 \pm 0.11	1.03 ± 0.13	1.03 \pm 0.09	$1.03~\pm~0.08$	1.04 ± 0.09	1.02 \pm 0.11
0 min	$\textbf{1.01}\pm\textbf{0.30}$	0.93 ± 0.31	1.15 \pm 0.37	1.06 \pm 0.33	1.15 \pm 0.46	1.19 \pm 0.42
2 min	1.04 ± 0.44	0.94 ± 0.31	1.05 \pm 0.41	1.11 ± 0.38	1.11 \pm 0.47	1.20 \pm 0.38
4 min	$1.16~\pm~0.37$	0.91 ± 0.37	1.17 \pm 0.34	1.16 \pm 0.33	1.30 ± 0.51	$1.20~\pm~0.31$
8 min	$1.14~\pm~0.35$	0.92 ± 0.43	0.98 \pm 0.27	1.15 \pm 0.29	1.19 \pm 0.45	$1.20~\pm~0.36$
10 min	$1.20~\pm~0.45$	0.99 ± 0.36	1.13 \pm 0.37	1.14 \pm 0.29	$1.06\ \pm\ 0.51$	1.31 ± 0.46
15 min	1.32 ± 0.53	1.08 ± 0.40	1.13 \pm 0.27	1.20 \pm 0.20	$\textbf{1.09}\pm\textbf{0.41}$	1.16 \pm 0.41
20 min	$1.27~\pm~0.52$	$\textbf{0.99}\pm\textbf{0.27}$	1.21 \pm 0.20	1.11 \pm 0.33	1.06 ± 0.43	1.04 \pm 0.22

A decrease of the MEP amplitude after 10-Hz stimulation was observed, but was not significant.

...but frequency-dependent functional effects

Physiology: Modulation of oscillatory activity by transcranial alternating current stimulation (tACS) I

Ali et al. 2013

Physiology: Modulation of oscillatory activity by transcranial alternating current stimulation (tACS)

Physiology: Modulation of oscillatory activity by transcranial alternating current stimulation (tACS)

Wischnewski et al., Cerebral Cortex, 2019

Physiology: Modulation of oscillatory activity by transcranial alternating current stimulation (tACS) IV

Neuroplastic effects

Conclusions

- Alteration of oscillations via prolonged tACS
- Frequency-specificity of effects
- Enhancement of synchronization with neighbored areas
- Relatively regional effects
- Additional neuroplastic effects
- Both, oscillatory, and neuroplastic effects, depend on NMDA receptors Wischnewski et al., Cerebral Cortex, 2019

tAC stimulation under complete muscle relaxation

Conclusion IV

tACS entrains oscillatory cortical activity

 Like tDCS, it has a modulatory, but not inducing effect

• Dependent on stimulation parameters, also neuroplastic effects are induced

Transcranial random noise

Terney et al. 2008

tRNS – physiological effects I

tRNS – physiological effects II

tRNS – physiological effects III

Ho et al. 2014

tRNS – physiological effects IV

Conclusion V

 tRNS at high frequencies induces excitatory neuroplasticity, although mixed effects

- not clear if it induces random oscillations
- Effects look similar to anodal tDCS

Final Remarks

transcranial electrical stimulation induces acute alterations of cortical excitability and activity

Prolonged tDCS induces neuroplastic after-effects

 tACS entrains cortical oscillations, some stimulation protocols also induce neuroplasticity

tRNS induces plasticity which share similarities with anodal tDCS

Devend regional offects also network offects are obtained

Team Min-Fang Kuo Asif Jamil Linda Kuo Aguida Foerster Jessica Grundey Giorgi Batsikadze Shane Fresnoza Jan Grosch Leila Farnad Desmond Agboada Mohsen Mosayebi **Ensyie Ghasemian** Fatemeh Yavari Alireza Shababaie Ali Salehinejad Lorena de Melo Elham Ghanavati Lin Cho Liu Carmelo Vicario Luca Moretti

Many thanks for your attention!

The 13th CME International Conference on Complex Medical Engineering – in Dortmund, Germany on September 23-25, 2019

Venue: Westfalenhallen Dortmund Rheinlanddamm 200 44139 Dortmund, Germany

General Chair: Prof. Michael Nitsche Head of Department of Psychology & Neurosciences, Leibniz Pasearch Centre for Working Environment and Human Factors (ItADo)

Important Dates: February 28, 2019: Proposals for organized sessions April 30, 2019: Submission of abstracts for organized sessions and posters June 30, 2019: Submission of full papers July 31, 2019: Notification

23.-25. September 2019

Liston Office: LeBott: Research Centre for Working Environment and Human Factors (NADo). Sitvis Roese | Phone: +49-231-1055-302 | Fax: +49-251-1084-340 | E-mail: cme20190ffacto.de

Information Office: Department of Psychology & Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IDADo), Ph.D. Min-Pang Kuo | Phone: +49-231-1084-339 | E-mail: cme2019@fado.de

LEIDNIZ RESEARCH CENTRE FOR WORKING ENVIRONMENT AND HUMAN FACTORS

More information: cme2019.ifado.de